$I(J^P) = \frac{1}{2}(?^?)$ Status: ** I, J, P need confirmation.

OMITTED FROM SUMMARY TABLE

Quantum numbers shown are quark-model predictions.

NODE=M225

NODE=M225M

NODE=M225

$B_{I}(5840)^{0}$ MASS

OUR FIT uses m_{B^+} and $m_{B_1(5840)^0} - m_{B^+}$ to determine $m_{B_1(5840)^0}$.

NODE=M225M

VALUE (MeV)

DOCUMENT ID

NODE=M225M

5863 ± 9 OUR FIT

$m_{B_1(5840)^0} - m_{B^+}$

DOCUMENT ID

NODE=M225DM

VALUE (MeV) 584± 9 OUR FIT

¹ AAIJ

TECN COMMENT

NODE=M225DM

584± 5±7

12k

15AB LHCB pp at 7, 8 TeV ullet ullet We do not use the following data for averages, fits, limits, etc. ullet ullet

² AAIJ

15AB LHCB pp at 7, 8 TeV

OCCUR=2

 $610 \pm 22 \pm 7$

NODE=M225DM;LINKAGE=A

 1 AAIJ 15AB reports $[m_{B^0_I}^{}-m_{B^+}^{}]-m_{\pi^-}^{}=$ 444 \pm 5 \pm 7 MeV which we adjust by the $\boldsymbol{\pi}^-$ mass. The masses inside the square brackets were measured for each candidate

event. The result assumes $P=(-1)^J$ and uses two relativistic Breit-Wigner functions in the fit for mass difference. ² AAIJ 15AB reports $[m_{B_I^0}^0 - m_{B^+}] - m_{\pi^-} = 471 \pm 22 \pm 7$ MeV which we adjust by

NODE=M225DM;LINKAGE=B

the π^- mass. The masses inside the square brackets were measured for each candidate event. The result assumes $P=(-1)^J$ and uses three relativistic Breit-Wigner functions in the fit for mass difference.

 $m_{B_I(5840)^0} - m_{B^{*+}}$

NODE=M225DM2 NODE=M225DM2

VALUE (MeV) **EVTS** DOCUMENT ID TECN COMMENT • • • We do not use the following data for averages, fits, limits, etc. • •

 $584 \pm 5 \pm 7$

mass difference.

³ AAIJ 12k

15AB LHCB pp at 7, 8 TeV 3 AAIJ 15AB reports $[m_{B^0}^{} - m_{B^+}^{}] - (m_{B^{*+}}^{} - m_{B^+}^{}) - m_{\pi^-}^{} = 444 \pm 5 \pm 7 \; {
m MeV}$

NODE=M225DM2;LINKAGE=A

which we adjust by the π^- mass. The masses inside the square brackets were measured for each candidate event. The result assumes $P=-(-1)^J$, $(m_{B^{*+}}-m_{B^+})=45.01\pm$ $0.30\,\pm\,0.23$ MeV, and uses three relativistic Breit-Wigner functions in the fit for mass difference.

$B_{I}(5840)^{0}$ WIDTH

NODE=M225W

NODE=M225W

VALUE (MeV)	<u>EVTS</u>	DOCUMENT ID	TECN	COMMENT
127±17±34	12k	⁴ AAIJ	15AB LHCB	pp at 7, 8 TeV
• • • We do not use the following data for averages, fits, limits, etc. • • •				
$107 \pm 20 \pm 34$	12k	⁵ AAIJ	15AB LHCB	pp at 7, 8 TeV
110 + 17 + 34	124	6 4411	15AR LHCR	nn at 7 8 TeV

15AB LHCB pp at 7, 8 TeV

⁴ Assuming $P = (-1)^J$ and using two relativistic Breit-Wigner functions in the fit for mass

⁵ Assuming $P = (-1)^J$ and using three relativistic Breit-Wigner functions in the fit for mass difference. 6 Assuming $P=-(-1)^J$ and using three relativistic Breit-Wigner functions in the fit for OCCUR=2 OCCUR=3

NODE=M225W;LINKAGE=A

NODE=M225W;LINKAGE=B

NODE=M225W;LINKAGE=C

B₁(5840)⁰ DECAY MODES

Fraction (Γ_i/Γ)

 $B^{*+}\pi^{-}$ Γ_{1} seen $B^+\pi^ \Gamma_2$ possibly seen NODE=M225215;NODE=M225

DESIG=1

DESIG=2

B_J(5840)⁰ BRANCHING RATIOS

NODE=M225R02 NODE=M225R02

NODE=M225220

NODE=M225R01 NODE=M225R01

NODE=M225R02;LINKAGE=A

 $B_J(5840)^0$ REFERENCES

AAIJ 15AB JHEP 1504 024

04 024 R. Aaij *et al.*

(LHCb Collab.)

NODE=M225

REFID=56628